
On hyperscaling in the Ising model in three dimensions

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1979 J. Phys. A: Math. Gen. 12 1819

(http://iopscience.iop.org/0305-4470/12/10/027)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 30/05/2010 at 19:05

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/12/10
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen., Vol. 12, No. 10, 1979. Printed in Great Britain 

On hyperscaling in the Ising model in three dimensions 

Bernie G Nickel? and Bruce Sharpe$ 
Department of Physics, University of Guelph, Guelph, Ontario N1G 2W1, Canada 

Received 22 November 1978 

Abstract. The spin-4 Ising model high-temperature series are re-examined by an analysis 
that parallels the method used to analyse the continuum 94 spin model. Our results for the 
king model in three dimensions do not agree with results in the literature based on more 
conventional methods of analysis. We cannot decide, using only the series terms presently 
available, which of the methods is to be preferred. We conclude that previous error 
assessments are unduly optimistic and that the three-dimensional, spin-$, king model may 
satisfy hyperscaling in agreement with the continuum results. An attempt is made to 
estimate the number of additional high-temperature series terms necessary to resolve the 
hyperscaling question. 

1. introduction 

Exponent estimates for the Ising model have conventionally been obtained by a direct 
analysis of the series expansions of correlation functions in inverse temperature or 
variable analytically dependent on the temperature. (For a review see Gaunt and 
Guttmann (1974). Some more recent analyses are those of Saul et al(1975), Camp and 
Van Dyke (1975), Camp et a/ (1976) and Baker (1977).) Inherent in these methods is 
the assumption that the singularity structure of the correlation functions in the complex 
temperature plane is sufficiently non-pathological that the first few available terms in 
the power-series representation already contain the information necessary for the 
description of the critical behaviour. Pad6 analysis of the series is then expected to 
extract efficiently the details of the critical behaviour from the remaining information. 
In certain cases other analyses such as ratio test, Neville table extrapolation, or 
temperature renormalisation may be preferable, but the advantages can only be 
marginal as all these methods have in common the temperature plane ‘smoothness’ 
assumption. 

Quite distinct from these standard methods is another scheme in which the 
assumption is made that correlation functions are relatively smooth functions of other 
observables such as, for example, the correlation length. There is no a priori reason to 
prefer either one or the other of these two assumptions. Because Ising model series are 
derived as functions of temperature, temperature analysis has always been treated as 
more natural. On the other hand, field-theoretic or continuum model expansions are 
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typically given as expansions in the renormalised mass, i.e. correlation length, and 
coupling constant and hence analysis in terms of these variables is the obvious choice. 

In this paper we examine the application of the field-theoretic methods to the 
analysis of the Ising model high-temperature series with the specific aim of testing the 
apparent failure of hyperscaling in three dimensions. (See the recent calculation of 
Baker (1977) and the references therein.) We define a variable that is the analogue of 
the renormalised coupling constant in the continuum 44 model and manipulate the 
known high-temperature series to express the correlation length as a power series in  this 
coupling constant analogue. We then attempt to establish by Pad6 analysis whether the 
correlation length diverges as the coupling constant approaches a finite value as is 
predicted by hyperscaling. There are clear indications of such a divergence for the 
body-centred cubic lattice and we estimate a critical renormalised coupling constant 
that differs by only 2% from the continuum q54 model estimate (Le Guillou and 
Zinn-Justin 1977, Baker eta1 1978). The results of our analysis of the simple cubic and 
face-centred cubic lattice are in  agreement with the body-centred lattice result but 
cannot be considered as strong independent evidence for hyperscaling. In the simple 
cubic case, the critical value of the coupling constant analogue is close to the radius of 
convergence of the series, and as a consequence our estimate is not precise. The series 
for the face-centred lattice appears to be better with regard to competition from 
unphysical singularities but only nine terms, as compared with thirteen for the other 
lattices, are available. 

Our procedure can be viewed as a mapping of the complex temperature plane onto 
the complex coupling constant plane, but it is crucial to note that this is qualitatively 
different from the analytic transformations that have been used on occasion in the 
conventional analysis. The coupling constant is not an analytic function of temperature 
in the vicinity of the critical point and the mapping will therefore produce a qualitutiue 
change in the singularity structure of the correlation functions to be analysed. Whether 
this change is an improvement can only be determined empirically from the series 
analysis. Since we obtain relatively stable Pad6 approximants with few defects (see, for 
example, Baker 1975) in both schemes we cannot, with the series terms presently 
available, decide in favour of one or the other. 

In an attempt to understand the source of the discrepancy between the coupling 
constant and temperature plane analysis we have made explicit comparisons of the 
correlation functions predicted by the two methods. We find that implicit in the 
temperature plane analysis, indicating violation of hyperscaling by an amount 3u  + y - 
2A = 0.03 (Baker 1977) is the prediction of cross-over behaviour at a correlation length 
to lattice spacing ratio ,$/a = 10. Since the available series only sample the lattice to a 
distance approximately equal to lOu, the prediction of the cross-over, and by impli- 
cation hyperscaling violation, must be treated with some scepticism. On the other hand, 
we argue that because the apparent cross-over length is only loa, the question of the 
validity of hyperscaling may very likely be resolved by the extension of the available 
series by a few more terms. 

In the following section we describe the series manipulations necessary for a 
coupling constant analysis and present our Pad6 results for the three cubic lattices. In 
D 3 we compare the coupling constant and temperature plane predictions for the 
body-centred cubic lattice and attempt to estimate the additional number of series 
terms needed to resolve the discrepancies. In the last section we present the results of 
analysis of two- and four-dimensional Ising systems and comment on the application of 
our methods to systems with order parameter dimension greater than one. 



Hyperscaling in the Ising model 1821 

2. Coupling constant analysis 

We will restrict ourselves to a discussion of the usual spin-$ Ising model in spatial 
dimension d. The partition function is 

2 = exp( K SiSj + hisi) 
(S,=*l) nn i 

where K is the ferromagnetic coupling between nearest-neighbour spins and hi is an 
external field at the lattice site i. Cumulant averages in zero magnetic field are defined 
by 

a a  a 
ahi ahi ah, 

(Sisi. . . Sl) ,=-  -. . .-In Zl(h,=o). 

We use the second-moment definition of the correlation length 5 and, for convenience 
in the following, define the dimensionless parameter 

x = 52/a2 = ( 2 d ) - 1 ( ~  (ri/a)*(so si)c)(c ( s o  (3) 
i 

where a is the nearest-neighbour spin separation and ri is the distance from the origin to 
the site i. For small K, x = qK/(2d) + O(K2)  where q is the coordination number of the 
lattice. In the vicinity of the critical point x diverges as (1 - K/Kc)-2y.  

The assumption of hyperscaling in the critical region is just the assumption that a 
single correlation length ,f sets the scale for the variation of all correlation functions and 
that the divergence of 5 as one approaches the critical point is responsible for the 
singular behaviour of all thermodynamic functions. Although the validity of this 
assumption remains unproven, it can at least be made plausible by renormalisation 
group calculations (see, for example, reviews by Wilson and Kogut 1974, Wilson 1975, 
Ma 1976, Domb and Green 1976) that are generalisations of the original block spin 
picture of Kadanoff (1966). The specific consequence of the hyperscaling assumption 
that we are concerned with here is the prediction for the behaviour of the dimensionless 
ratio of cumulant averages ( ( X i  Si)2"'2)c/((2,  Si)'):+'. Note that this ratio does not 
depend on the particular normalisation chosen for the spin variable Si. Also, this ratio 
does not depend explicitly on the lattice spacing in the critical region since whenever the 
spin correlations are long range we may use the continuum approximation 
((I ddr S(r ) )2n '2 )c / ( (~  ddr S(r))2):+*.  The hyperscaling assumption then states that the 
only remaining microscopic dependence is the implicit dependence through the cor- 
relation length 5. Since each cumulant average is extensive and hence proportional to 
the volume V of the system, we deduce that the ratio is proportional to td"Tn.  The 
n = 1 ratio is conventionally used to define the dimensionless renormalised coupling 
constant 

which is expected to approach a constant U* in the limit that the correlation length 
diverges. Furthermore, if we assume universality in addition to hyperscaling, then the 
constant U* should be the same for all models with scalar order parameter. In the case 
d = 3, we have the accurate continuum-model (cf equation (12)) estimate (Le Guillou 
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and Zinn-Justin 1977, Baker et a1 1978) 

3~*/16.rr = 1.415 *0-003, ( 5 )  

but this is not consistent with the results of conventional temperature plane analysis of 
the spin-; model where U appears to vanish as (l-K/KJd*" with the anomalous 
dimension d* = 3 - (2A - y ) / v  = 0.044 f 0.005 (Baker 1977). In the following we 
investigate whether an analysis of the spin-; model that parallels the method used to 
obtain ( 5 )  can change this conclusion. 

We rewrite the expression (4) for the coupling constant as 

where V/N is the volume per lattice site, and note that as K -PO each average ( ) c  

approaches unity but U diverges because x E K .  Hence it is advantageous to define 
--d - d / 2  u=2(V/N)a  y 

where now y has a Taylor expansion in K. Because of the linear relationship between x 
and K for small K, the second-moment series (3) can be reverted order-by-order and 
the result used to express (8) as a series in x. Finally, because of the linear relationship 
between y and x for small x ,  (8) can be reverted to obtain x as a series in y .  The validity 
of hyperscaling is then simply tested by determining whether x diverges as y approaches 
some critical value y* .  We make the standard asymptotic assumption 

Y = Y* - C(a/O" a / (  -+ 0, (9) 

where w is the (universal) exponent characterising the leading corrections to scaling and 
C is a model-dependent constant (Wegner 1972). If (9) is correct, then we obtain 

Y - + Y * .  (10) 1 = 5 w ( y  * - Y 1 
That is, we expect the inverse logarithmic derivative y ( y )  to have a zero at y = y *  with 
negative slope -$W.  From the definitions (3) and (7) we see that (10) can be rewritten as 

and the last expression in (11) can be related directly to the Callan-Symanzik function 
as conventionally defined in the continuum model (see, for example, Brezin et a1 1976). 
Before proceeding with the series analysis of (10) we digress to discuss this connection 
with the continnuum model in more detail. 

To make the discussion concrete we introduce the continuum model defined by the 
partition function 

Z =  n duq exp - - ~ ( m ~ + q 2 + q 4 / A 2 ) u ~ - q  (,I 1 ( 2t. 
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where uq =jddr  exp(-iq - r)S(r) is the Fourier transform of a continuous spin dis- 
tribution and the momenta q are restricted to the usual discrete set allowed by periodic 
boundary conditions in a volume V. The calculations leading to ( 5 )  were based on the 
model (12) in the limit that the momentum cut-off A -* a. For the convenience of the 
reader we list below quantities defined in those calculations and of relevance here. First, 
the renormalised mass was defined by the relation 

= (2d)-' ddr r2(S(r)S(0)),( ddr (S(r)S(0))c)-l 

so that in the critical region where a continuum approximation may be used for (3), the 
definitions for 5 and m-' are in agreement. Strictly speaking, of course, 6 # m-' since 
the definitions (3) and (13) refer to different models; however, since in the following it 
will be obvious from the context which model is under consideration, we will not make 
this distinction and simply set 6 = m-'. Similarly, the renormalised coupling constant 
A R  is given by 

hR = - ~ m " < u & < u 3 , ~  

(14) 
and the dimensionless coupling constant U defined by (14) agrees with the definition (4)  
for the king model. Finally, we note that in the limit A +  a, U defined by (14) is a 
function of the dimensionless factor Amd-4 only and as a result, in the calculation 
leading to (3, the Callan-Symanzik function could be written in various equivalent 
ways. For example, 

4-d = m  U 

On comparing ( 1 1 )  and (15) we see that both y and p measure the rate at which the 
coupling constant approaches its fixed-point value as the correlation length diverges 
while the remaining microscopic length parameters are held fixed. We define 

Y ( Y ) / Y  d- 'P(u) /u  (16) 
and view (7) and (16) as a convenient set of relations for comparing the continuum and 
spin-4 Ising model systems. In this regard, one particular point should be noted. In the 
Ising model the numerical evidence in three dimensions suggests that U is a monotonic 
decreasing function of 5 and hence approaches U* from above. In the continuum model 
with A = a, it appears that U is a monotonic increasing function of 6 and approaches U* 
from below. Thus if U* is the same for the two models the functions p or y are never 
defined on the same interval. This somewhat surprising behaviour is presumably 
related to the dramatic microscopic differences in the two models. We note that if, in 
three dimensions, A and A are both finite, then (12) can be viewed as an approximation 
to the lattice model defined by 
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where Si is a continuous spin variable on the lattice site i, K4 is of order A/A and K2 plays 
the same role as mi in (12) or K in (1). If in (17) we take the limit K4 = K2/2K +CO for 
fixed K, the Ising model (1) is obtained. Clearly there is a complete reversal of the roles 
of A and A; the Ising model is the limit A / A + c o  whereas the model leading to the 
estimate ( 5 )  is the limit A/A + 0. 

If we accept the renormalisation group picture as a valid description of the critical 
region, and in addition assume that the limiting procedures discussed above do not 
invalidate any of the renormalisation group arguments, then we expect y(y )  for the 
continuum model and Ising model to be zero at the same y = y*.  Also, if the coefficient 
of the leading correction term to scaling does not vanish in either model, we expect the 
function y(y) to have the same slope at y = y*.  There is no direct evidence that the 
constant C in (9) vanishes for the Ising system since previous temperature plane 
analyses have excluded the existence of a finite y*. However, it is worrying that the 
analysis of the Ising susceptibility and correlation length series separately does indicate 
that the leading confluent correction terms vanish for spin-; (Saul et a1 1975, Camp and 
Van Dyke 1975, Camp eta1 1976). If the analysis of y(y) as given below is correct, then 
there should have been confluent corrections with detectable amplitude in at least one 
of the functions x, M2, or a2X/ah2. 

From the available high-temperature series expansions (Essam and Hunter 1968, 
Moore ef a1 1969) we determine y(y),  the analogue of the Callan-Symanzik function, 
for the three cubic lattices as given below. 

(a) Simple cubic: 

y = y -8y2+24y3- 112y4+469fys -896y6-2880y7 
+46563$y8- 159466$~~-512960y '~+  5772583,~ 41 1 1  

- 1 6 3 7 7 3 5 3 ~ ~  13 1 2 -  5 3 1 0 0 4 1 6 ~ ' ~ +  . . . , ( 1 8 ~ )  

( c )  face-centred cubic: 
= y -8y2+4y3+ 16y4+594y5+238fy6+777y7 

+ 1539$y8-371%y9+ . . . . 

We have analysed these series by Pad6 approximant methods and tables 1 to 3 give our 
results for the apparent zero y* and the slope y'(y*). For the simple cubic lattice the 
higher-order Pad6 approximants show singularities in the complex y plane in the 
neighbourhood of -0.10 * 0- 17i and 0.14 f 0.20i. Because of the interference from 
these singularities the estimate of y* is not precise and the behaviour of y(y) for 
y b 0.25 is quite uncertain. For the body-centred cubic lattice the dominant singulari- 
ties in y appear at y = -0.14 ~t 0.16i; the behaviour of y(y) for y b 0.22 is uncertain but 
the apparent zero in this case lies well within the estimated radius of convergence of the 
series and hence is actually better defined. The series for the face-centred cubic lattice 
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Table 1. Central block of Pad6 estimates of y ( y )  giving zero y* (upper number) and slope 
y ' (y*)  (lower number) for the simple cubic lattice. A blank denotes no positive axis zero and 
asterisks denote defects, i.e. Pad6 estimates with a close pole-zero pair. 

4 5 6 7 8 9 10 

3 0.17988 

4 0.18340 

5 0.185* 

6 0.18959 

7 0.19087 

8 0.18962 

9 0.18869 

-0.724 

-0.666 

-0.64 

-0.556 

-0.531 

-0.560 

-0.585 

0.18803 

0-175* 
-0.553 

-0.75 

- 
0,19134 

0.19028 

0.185* 

-0.521 

-0.544 

-0.77 

0*180* 
-0.71 
- 
- 
0.18418 

0.18868 

0.18918 

-0.678 

-0.582 

-0,570 

0.19910 0.196* 0.17282 0.18697 

0.19218 0.18816 0.18918 

0,18996 0.18907 

0.18939 

-0.328 -0.41 -1.701 -0.649 

-0.492 -0.602 -0.570 

-0.548 -0,573 

-0.563 

is too short to enable us to even predict the existence of a zero with any certainty. Actual 
plots of y ( y )  for the three lattices are shown in figure 1. Included in these figures are 
error estimates obtained by extrapolation of small-y errors as suggested by Hunter and 
Baker (1973). The errors grow sufficiently rapidly with increasing y that for the simple 
cubic lattice the y(y) curve only dips below zero by an amount approximately three 
times the apparent error. For the body-centred lattice the negative value of y is as much 
as six times the apparent error. Thus in the body-centred lattice we can be reasonably 
confident that y(y) actually has a zero; the evidence from the simple cubic lattice is 
marginal. On the other hand, if we assume the existence of a zero at y = y*, then we 
obtain the following estimates. 

Table 2. As table 1 for the body-centred cubic lattice. 

4 5 6 7 8 9 10 

3 0.15210 0.16239 0.16151 0.15964 0.15960 0*160* 0.15936 

4 0.15494 0.16148 0*163* 0.15957 0.160* 0.15951 

5 0.15569 0,15913 0.15932 0.15937 0.15937 

6 0.15759 0.15935 0.15940 0.15937 

7 0,15822 0.15939 0.15937 

8 0.15860 0.15937 

9 0.15893 

-0.783 -0.481 -0.512 -0.578 -0.580 -0.58 -0.589 

-0.718 -0.513 -0.47 -0.581 -0.58 -0.583 

-0.701 -0.598 -0.591 -0.589 -0.589 

-0.652 -0.590 -0.588 -0.589 

-0,633 -0.588 -0.589 

-0.621 -0.589 

-0.609 
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Table 3. AS table 1 for the face-centred cubic lattice. 

2 0.15367 

3 0.15818 

4 0.15264 

5 0.15089 

6 0,15053 

-0.457 

-0.289 

-0.504 

-0.573 

-0.588 

0.15587 0-155* 0.14829 

0.155* 0.156* 0.15089 
-0.379 -0.41 -0.693 

-0.41 -0.36 --0.571 
0.14793 0.15084 

0.15035 
-0.713 -0373 

-0.596 

0.15048 
-0.590 

Figure 1. The full curves are estimates of the spin-) Ising model y ( y )  based on the nt /n  
Padis as indicated for the three cubic lattices. The broken lines are continuum model y ( y ;  
estimates obtained using (7) and (16) and a Pad6 Borel-Leroy estimate of p(u) .  An 
enlargement of the small box region in the body-centred lattice graph is shown in figure 2. 
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(a) Simple cubic: 

y* =0*189*0*002 y’(y*)  = -0.56 * 0.04 3u*/16~r= 1*45*0*02; 
(19a) 

(b) body-centred cubic: 

y*  = 0.1594 * 0.0008 y’ (y*)  = -0.59 * 0.03 3u*/16~r = 1*444*0*01; 
(196) 

( c )  face-centred cubic: 

y*  =0*151*0*005 y ’ ( y * )  = -0.6 * 0.2 3 ~ * / 1 6 ~ r =  1*44*0.07. ( 1 9 ~ )  

Thus the different lattice estimates are completely consistent and yield a U* that is about 
2% above the continuum estimate ( 5 ) .  The correction to the scaling exponent w = 
-2y’= 1.18 is some 50% above the continuum estimate of w -0.79. Were it not for 
the conflicting temperature plane analysis results we would conclude that the spin-$ 
Ising model satisfies scaling, but that it does not lie in the same universality class as the 
continuum model. 

In an attempt to  clarify this rather unsatisfactory situation we have made certain 
comparisons as described in the following section. These comparisons include new 
error estimates of temperature plane analysis results that are consistent with the 
exponent uncertainties obtained by Baker (1977) but are more directly related to those 
obtained here and shown in figure 1. 

3. Coupling constant against temperature plane analysis 

To present a direct visual comparison of coupling constant and temperature plane 
analyses we have replotted a small region of figure 1 for the body-centred cubic lattice in 
figure 2. Different portions of the spin-? (y) curve are distinguished by values of the 

tion of the Pad6 estimate of y ( y ) .  Also replotted from figure l is y ( y )  for the continuum 
model as determined from Borel-Leroy Pad6 estimates of the p function and the 
transformations (7) and (16). In this case the curve is labelled by the dimensionless 
correlation length 3A[/16r where 5 = m-*.  From (14) we see that in three dimensions 
the expansion for U begins as 

dimensionless correlation length [/a = 2 x which were obtained by numerical integra- 

u=h((1-3h&‘16~+ ...) (20) 
so that in some sense 3h[ /16~60(1)  represents a weak coupling region and 
3h[/16~r a 0(1) is strong coupling. Error bars on the spin-3 y ( y )  curve are Hunter- 
Baker (1973) estimates exactly as in figure 1. The error estimate in ( 5 )  is the larger of 
the two estimates given by Le Guillou and Zinn-Justin (1977) and Baker et a1 (1978); 
the y estimate corresponding to ( 5 )  is y* = 0*1616*0.0002 and the uncertainty is 
negligible on the scale shown in figure 2. 

To obtain the comparison with temperature plane analysis we determined the 
functions x ( u )  and y (U) for the body-centred cubic lattice by integrating 
numerically Pad6 approximant estimates of f = (uc-  u)(d/du) ln(x/u) and g = 
(uc- u)(d/du) ln(y/x). Here U = tanh K and the critical value uc = 0.1561093 . . . was 
determined from the 7/7 Pad6 of the logarithmic derivative of the susceptibility series 
(Sykes et a1 1972). Straightforward manipulations of x ( u )  and y ( u )  then yield y(u ) .  
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a 
Y 

Figure 2. Comparison of y(y) obtained by temperature plane (upper full curve) and direct 
y-plane Pad6 analysis (lower full curve for y<O.16) of the spin-$ Ising model on the 
body-centred cubic lattice, and Pad6 Borel-Leroy analysis (lower full curve for ) > 0.16) of 
the continuum model. Spin-i Ising curves are labelled by &‘a ratios; the continuum curve is 
labelled by values of 3A[/16~. 

One particular but representative result, based on the diagonal 5/5 Pade for f and the 
5 /6  for g, is plotted in figure 2. Again, a number of values of t / a  are shown on the y ( y )  
curve. Since temperature plane analysis predicts that the coupling constant U vanishes 
as (1 -K/Kc)d*” and x diverges as (1 -K/K, ) -2y ,  we obtain immediately from (7) and 
(1 1) that in the asymptotic regime y diverges and 

Y ( Y ) l Y  = d ” l d  y + W .  121) 

Thus implicit in the temperature analysis is the cross-over behaviour in y ( y )  so evident 
in figure 2. Furthermore, the length scale 6 at which cross-over occurs is directly related 
to the magnitude of the anomalous dimension d * .  The error estimates on the y ( y )  
curve based on temperature plane analysis were obtained by the Hunter-Baker (1973) 
method of extrapolating the small- y error estimates. Exactly the same analysis applied 
to f and g leads to the estimate 

122) 

to be compared with Baker’s (1977) estimate 0.029 f 0.005 for the body-centred 
lattice. The small differences are not significant because the present analysis is carried 
out in the tanh K plane whereas Baker used a renormalised T, approach. 

To show that hyperscalingfails we must show that y ( y )  approaches yd*/d for large y 
as given by (21); the evidence for such a straight line in figure 2 is not compelling. This 

3 v  + y -2A= 0.025 lt0.004 
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situation is reminiscent of what we found in the y-plane analysis. Because of the rapid 
growth of errors the existence of a zero of y(y) was not definitely proved but by 
assuming a zero exists we could make the quantitative estimate (19b). Similarly, by 
temperature plane analysis we have not proved that hyperscaling fails, but again, by 
assuming that y(y) approaches yd*/d we can make the quantitative estimate (22). 

The obvious discrepancy between the central estimates obtained by coupling 
constant and temperature plane analysis as shown in figure 2 is not so surprising when 
one distinguishes those sections of the y(y) curves that are based largely on extrapola- 
tion and, in addition, one makes a plausible guess as to the true behaviour of y(y). To 
take an extreme view, we note that the second moment of the pair correlations is 
represented approximately by an integral proportional to r*(exp(-r/[)/r)r* dr and 
hence its value is dominated by the region r = 35. Since the available series only extend 
to 12 terms and thus to a distance 1 2 4  we can argue that only the region e /a  6 4 is based 
on hard evidence and that the region e /a  3 4 is determined by the implicit assumptions 
built into the series analysis methods. If the correct y(y) is almost a straight line with 
slope -0.6 in the region y S 0 - 1 5  and a curve in the region 0 * 1 5 S y S 0 * 1 6  so as to 
match the continuum model slope of -0.4 for y 30.16,  then the two distinct Pad6 
estimates are quite reasonable. In the present scheme one assumes ‘smoothness’ in the 
coupling constant and hence the Pad6 attempt to fit the true curve with the best straight, 
or nearly straight, line. In the temperature analysis scheme curvature is easily accom- 
modated by a finite anomalous dimension d*; no internal inconsistency is apparent 
because the straight line portion y(y) = d*y/d only applies for ( / a  ratios well beyond 
those directly accessible from the available series. 

We remark, as an aside, that similar uncertainty arguments could be applied to the 
continuum model curve in figure 2. This curve has been labelled by the dimensionless 
product 3Ae/16~ and one would naively have expected the strong coupling region 
3A5/16~ >> 0(1) to be inaccessible by perturbation theory. The error assignment in (5) 
is realistic only if one assumes that P ( u )  is completely structureless, that is, no new 
physics develops for large values of the dimensionless correlation length. Renor- 
malisation group calculations such as those begun by Golner and Riedel(l975) should 
therefore prove extremely valuable in providing independent estimates of the 
behaviour of the continuum model. 

We conclude this section with an attempt to estimate the additional number of 
body-centred lattice, high-temperature, series terms needed to decide between the two 
curves in figure 2. Two specific calculations are described in which we explore what we 
believe are the ‘weak links’ in the coupling constant and temperature plane analyses. 
We first investigate to what extent hyperscaling is forced into, rather than derived from, 
the coupling constant plane analysis. Thus, although in principle Pad6 analysis in the y 
plane could reproduce the y(y) curve for a model in which hyperscaling failed, in 
practice the number of terms required might be so large as to make the calculation 
impossible. To test this possibility, we have obtained y-plane Pad6 analysis estimates of 
the temperature plane y(y) curve shown in figure 2. Specifically, we treated as exact the 
5/5 Pad6 estimate of f=(uc-u)(d/du)1n(x/u) and the 5/6 estimate of g =  
(uc-  u)(d/du) In(y/x) where U = tanh K and uc = 0,156 . . . as before. Instead of 
obtaining x ( u ) ,  y(u)  and y(u) by numerical integration we obtained the Taylor series 
expansions of these functions in U. Straightforward manipulation of these series yielded 
y(y). The first 13 terms of course agree with the exact series (186). Our results for the 
Pad6 analysis of this ‘possible’ y(y) are shown in table 4. Essentially all the Pad& based 
on anywhere from 14 to 18 terms contain defects which we interpret as evidence that 
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Table 4. Estimates of y ( y )  x lo3, y = 0.15937, as given by ( n  + l ) / n  Pade. The number of 
terms in the y ( y )  series on which each Pad6 is based is N = 2n + 1. Coefficients up to N = 13 
are exact; coefficients for N 2 14 were obtained from tanh K plane Pad6 estimates as 
described in the text. Asterisks denote Pad6 estimates with defects. Numbers in brackets 
give the positive axis pole position for those estimates which do not have a zero near 
y = 0.16 but curve upwards and diverge rather dramatically. K-2 -1 0 

9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

26 

-2.604* 
-1.161 -0.145 

-0.013 
0,012 0.017 

0.003 
0.01* 0.02* 

-0.01* 
-2,56* -0.15* 

-0.83* 
-1.49* 1.12 

2.33 (0.177) 
3.51 (0.169) 5.92 (0.164) 

2.96 (0.171) 

4.16 (0,166) 4.17 (0.166) 

Exact = 2.939 

1 2 3 

1.095 1110 
1.600 

-0.032 0.115 
0.002 

-0~000 
0.00* 

-0.03* 0.11" 
1.81 (0.182) 

-3.55* -2.51" 
5.83* (0.165) 

2.61 (0.1741 
2.01 (0.184) 2.19 (0.180) 

2.74 (0.173) 2.76 (0.1731 

4.17 (0,166) 

the behavior of y(y) is different from its assumed behaviour based on 13 terms. Pades 
based on 19 or more terms clearly indicate y(y) has no zero. We find this extremely 
encouraging in that extension of the available series by even a few terms would be useful 
and that extension by six terms is likely to be definitive in demonstrating whether or not 
the coupling constant plane analysis will show a zero near y -- 0.16. 

For our second analysis we assume that the available terms only determine the 
correlation length correctly for t / a  =s 4 as discussed earlier. Since such a small t / a  ratio 
may not be representative of the critical region, we treat the 5/6 u-plane Pad6 estimate 
of g = (U,-v)(d/du) ln(y/x) and the 7/6 y-plane estimate of y(y) as exact and deter- 
mine from these an extrapolated series for x ( u ) .  Pad6 estimates of f =  
(uc -  u)(d/du) ln(x/u) based on the exact 12 terms yield the exponent w = 0.638, 
estimates based on 13 to 18 terms contain defects and estimates based on 20 or 2 1 terms 
yield v -- 0.634. This is disappointingly slow convergence to the exact scaling value of 
0.6292 for this model series, but is not so surprising since the point v = vc is a confluent 
singularity. We conclude that unless sophisticated methods of analysis that handle 
confluent singularities can be made to work, six additional terms will not be adequate to 
establish, by temperature plane analysis, precise exponent estimates that verify the 
y-plane results. The best one can hope for is the negative information deduced from the 
presence of a large number of defects in the temperature plane Pad6 tables. 

Work on extending the body-centred lattice susceptibility and correlation length 
series by the linked cluster method as developed by Wortis and co-workers (Moore el a1 
1969, Wortis 1974) is being started. An enormous simplification that has not, to our 
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knowledge, been used before is possible because of the particular form of the nearest- 
neighbour coupling on this lattice, namely only free embedding constants on a one- 
dimensional chain need be evaluated. We expect that a considerable extension of the 
available series will be possible and since all graphs that contribute to the body-centred 
lattice or its hypercubic generalisations also contribute to the linear chain and simple 
quadratic lattice we can virtually guarantee the correctness of the new terms. It is not 
obvious to us what method is to be preferred for generating higher-order terms for the 
second field derivative of the susceptibility, but we hope that the present analysis will 
motivate others to examine the feasibility of extending this series. 

4. Other systems 

Although our major interest has been in resolving the question of hyperscaling in three 
dimensions, we have also analysed the spin-$ high-temperature series for the two- 
dimensional square and triangular lattices and the four-dimensional hypercubic lattice. 

For the simple quadratic lattice hyperscaling is not in doubt and hence y ( y )  must 
have a nontrivial zero. To estimate y* we have used all the terms available for a2X/ah2 
(Essam and Hunter 1968) and this required an extension of the known series for M2 
(Fisher and Burford 1967). From the work of Wu et a1 (1976) one can obtain explicit 
expansions for both x and M2 in which, for T > T,, the terms of order (2n + 1) are given 
as 2ndimensional integrals over elementary functions. By expanding the integrands as 
high-temperature series and performing the necessary integrations numerically we 
have obtained 

~( ' )+,y(~)=.  . . + 1 5 0 6 6 0 3 8 8 ~ ' ~ + 3 7 7 0 0 9 3 6 4 ~ ~ ~ + 9 4 2 1 0 6 1 1 6 ~ ~ ' + .  . . (23) 

and 

Mi') +Mi3' =. . . +3185188~"+9468480~'~+27729316u'~ 

+ 80 168352 U l4 + 229 179 140u + 648697984~ l6 

+ 1820052468~~'+5066498144u'~+ 14004100644~'~ 

+ 38461 1 19936u2'+ 105017024900~~~ + 285226504608~~~ + . . . . 
(24) 

The terms in x(') + x ( ~ )  up to order uI9 agree with the expansion of ,y given by Sykes el a1 
(1972). Since we find x ( ~ )  and My' first contribute respectively at order u24 and u2', the 
results (23) and (24) also give the total x and Mz. The expansion of y(y) is 

y = y - 8 y  2 + 8 y 3 - 3 2 y 4 - 1 6 y 5 + 4 8 0 ~ 6 + 1 3 4 4 ~ 7 - 1 2 8 ~ 8 - 8 0 0 ~ 9  

+ 14112~'0-233728~"-2923840~'2- 17714048~ '~-95329280~ '~  

-559149248~ '~ -3197866176~ '~ - .  . . , (25) 

and from a Pad6 analysis of (25) we estimate 

~ * = 0 ~ 1 3 6 1 * 0 ~ 0 0 0 2  y'(y*) = -0.94 * 0.04 3~*/8.rr= 1*754*0*003. 
(26) 
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The higher-order Padts show y ( y )  has singularities in the complex y plane near 
y -- 0.19 f 0.04i and, although this suggests that y * may be the beginning of a branch cut 
rather than a simple zero of y ( y ) ,  we have not been able to verify this by other methods 
of analysis. 

The estimate (26) for U* is consistent with the estimate 3u* /8 r  = 1-754* 0.001 we 
obtain from an analysis of a nine-term y ( y )  series for the triangular lattice and also with 
the value 1.751 f 0.005 obtained by Baker (1977) by temperature plane analysis. The 
value for the correction to the scaling exponent w = -27’ = 1.88 f 0.08 for the simple 
quadratic and 2.00 f 0.02 for the triangular lattice is surprising and not understood. 
The corrections to the susceptibility are known (Wu et a1 1976) to contain terms 
proportional to K c -  K and (Kc-K)7’4 so that we would naively have expected w = 1 
or, if the coefficient of the leading correction term in y vanished, w = 1-75. 

For the four-dimensional hypercubic lattice there is no evidence for a zero in y ( y )  in 
the range y d 0.26 and for larger y the uncertainty in y ( y )  is too large for any definitive 
conclusion. 

It is difficult to see how the y ( y )  analysis could be extended to systems with order 
parameter dimension n > 1. One of the key but unstated assumptions in the y-plane 
analysis described in this paper is that y ( x )  is monotonic and hence the inverse x ( y )  is 
single-valued. If instead y ( x )  had a maximum y’ for some finite x, then y ( y )  would have 
a square-root branch point at y = y’ and the critical region y --- y* would not be 
accessible by Pad6 analysis. For the spin-; Ising model a monotonic y ( x )  is reasonable 
since the discrete nature of the spins means the fluctuations are always very non- 
gaussian and hence the coupling constant U, which measures deviations from the 
gaussian, can be expected to be large. However, for systems with n > 1, the dominant 
fluctuations near the critical point are very likely transverse; hence the discrete nature ’ 

\ J 

[ -20 

\ 
\ 
\ 

\ 
\ 
\ 

U’ IU Y UUJ 

Figure 3. Linear chain y ( y ) .  The chain curve is the result (27) for the Ising model; the full 
curve is (34) for the spherical model. The broken line is y ( y )  for the continuum (I#J*? 
spherical model. 
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of the spin magnitude is irrelevant and the system can be expected to behave like a 
continuum model. In this case y will approach y *  from above and so y ( x )  must have a 
maximum. The situation for the nearest-neighbour, discrete length, spin model in one 
spatial dimension is worked out below and one can indeed show that for all n > 1 y 
approaches y*  from above. On the other hand, for the spin-; Ising model 

~ ( ~ ) = ~ [ 1 - 8 ~ - ( 1 - 6 ~ ) ( 1 - 8 ~ ) ' ~ * ]  (27) 
and the plot of this y in figure 3 is seen to be qualitatively similar to the three- 
dimensional results shown in figure 1. 

For arbitrary order parameter dimension n we define our model by the partition 
function 

(28) 

We maintain x = t 2 / a 2  as the second moment of the correlations but for numerical 
convenience modify the normalisation of y so that (8) now reads 

2 = (v I dnSi S (Sf - 1)) exp( K Si Si+ 1 + his?). 
I i 

Fisher's (1964) calculation for the linear chain classical Heisenberg model can be easily 
extended to treat both higher-order correlations and arbitrary n. We find 

where 

A 1 = (Si * Si+l) = I n / Z ( K ) / I n / 2 - 1 ( K )  
(31) 

with I, the modified Bessel function. For arbitrary n, (30) must be handled numerically 
but for both n = 1 and n + 00 simplifications occur. In the Ising limit, n = 1, (30) reduces 
to 

y = A 1 ( 1 + A 1 ) 2 ( 1 + 4 A 1 + A : ) - 2 = ~ ( 1 + 4 ~ ) ( 1 + 6 ~ ) - 2 ,  (32) 
from which we obtain the explicit expression (27) for y ( y ) .  In the spherical model limit 
we find 

~2 = (n(Si Si+l)'- l>/(n - 1) = I n / 2 + 1 ( K ) / I n / 2 - 1 ( K )  

lim ~ ( A : - A z ) = ~ A z ( ~ - A * ) / ( ~ + A z )  

lim y = A 1( 1 + A  :)'(l + A  

n +m 

(33) 
= x (1 + 2 ~ ) ~ (  1 + 4 ~ ) - ~  

n-rm 

and 
lim y ( y )  = y ( 2  cos #J - 1)(4 cos #J - 1)/(2 cos #J + 1) 

cos3#J=1-27y 

n-m 

(34) 

The result (34) is plotted in figure 3. It is qualitatively similar to y ( y )  for arbitrary n # 1 
and illustrates our contention that y * cannot be obtained by a direct series analysis of y.  

COS #J = (1 +x) / ( l+4x) .  



1834 B G Nickel and B Sharpe 

To illustrate another point, we have also plotted y ( y )  for the continuum (q52)2 spherical 
model. Although the values of y *  are in agreement the slopes y ’ ( y * )  differ and reflect 
that in the continuum model the leading corrections are proportional to m3/A 
compared with a 2 / t 2  in the lattice model. This is an ‘accidental’ feature of the 
continuum model because a high momentum cut-off A has not been included; finite A 
would lead to corrections proportional to m 2 / A 2 .  
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